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1 Introduction

High-throughput chromosome conformation capture (Hi-C) [1] is one of the most popular methods to analyze the three-
dimensional architecture of the genome. Using proximity-based ligation combined with high-throughput sequencing,
the Hi-C method produces a heat map contact matrix where each value represents the interaction frequency between
two loci on the genome. The analysis of these matrices has led to discoveries on the nature of chromatin folding [2} 3]
and its role in gene regulation [4} 5], uncovering a new relationship between genome architecture and cellular functions.

Typical Hi-C matrices are generated at a resolution between 1 Kb and 1 Mb per pixel. In general, a linear increase in
resolution requires a quadratic increase in sequencing depth [6], making high resolution Hi-C data costly to obtain.
Single image super-resolution techniques have been very successful when applied to natural images [7, 8]]. In the
context of Hi-C, super-resolution provides a method to computationally increase the number of sequencing reads and
therefore increase the resolution of the contact matrix. These methods have provided researchers with a means to
generate a high resolution Hi-C data set with a significantly reduced number of sequencing reads.

Previous deep learning based Hi-C enhancement methods that optimized for a Mean Squared Error (MSE), such as
HiCPlus [9] and HiCNN [10], suffer from a lack of high frequency content resulting in a blurred output. This is caused
by an objective function which prefers solutions that are the pixel-wise average of many possible solutions that lie on the
plausible image manifold [[11},[12]]. To avoid blurred predictions, hicGAN [13]] and DeepHiC [[14] were proposed. First,
hicGAN replaced pixel-wise loss functions with a purely adversarial loss. However, this caused hicGAN predictions
to miss details found in the true high resolution data. DeepHiC combined an adversarial loss, pixel-wise loss, and a
perceptual loss derived from a VGG-16 loss network [15]] trained on ImageNet [16]. However, the introduction of this
perceptual loss caused unwanted image artifacts in DeepHiC’s predictions not otherwise found in real Hi-C data due to
the use of a loss network trained on a natural image dataset.

We therefore proposed a novel Hi-C Super-Resolution (HiCSR) framework capable of accurately recovering the fine
details found in high resolution Hi-C contact maps. This was achieved using a novel loss function tailored to the Hi-C
enhancement problem. HiCSR optimizes both an adversarial loss and feature reconstruction loss obtained from the
latent representation of a denoising autoencoder (DAE) [[17] pretrained to reconstruct high resolution Hi-C data. HICSR
was able to produce visually convincing and highly accurate Hi-C matrix enhancements given Hi-C data with 16 times
fewer aligned reads. This was achieved while avoiding smoothed outputs caused by MSE, and image artifacts caused
by perceptual losses developed for natural images.

2 Methodology

The dataset used to train and evaluate HICSR was generated by randomly down-sampling the original aligned reads by
a factor of 16 to simulate a low resolution Hi-C dataset. From both the original (high resolution) and down-sampled
reads, two sets of intrachromosomal contact maps were generated. Both sets were normalized by sequence depth to
remove model dependency on the total number of raw interactions. We defined the matrix M€ as the raw contact matrix
of chromosome ¢, and performed a log transform on the contact matrices given by X¢ = log, (1 + M¢). Next, we
applied a linear transform 2X¢/max; ;{X¥ ;} — 1, normalizing the matrices to the range [—1, 1] for each chromosome.
From these normalized contact matrices, we cropped overlapping 0.4 x 0.4 Mb sub-matrices from each contact map.
Interactions with a genomic distance > 2 Mb (far from the matrix diagonal) were discarded. This was done as most
meaningful interactions occur within Topologically Associating Domains (TADs), and the majority of TADs have a size
< 1 Mb within the human genome [2].
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Figure 1: Overview of HiCSR. (A) During training, Generator i produces super-resolution outputs I°% = G(I*%)
given a low resolution input, 7%, Then, Discriminator D classifies true high resolution data 7#* and enhanced data
G(I*%) as either true high resolution data or an output from G. The discriminator’s performance on the classification
task produces an adversarial loss, [,4,. The inputs to D are also passed through the DAE, where feature reconstruction
loss l?e ¢ 18 computed. (B) DAE consists of 5 convolutional layers followed by 5 deconvolutional layers with skip
connections every other layer. (C) G network consists of 15 residual blocks with a skip connection, and is used to
enhance low resolution Hi-C data to produce I°. (D) D network classifies inputs as real high resolution or enhanced
Hi-C data.
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An overview of the HiCSR framework can be seen in Figure[I} We employed an adversarial training procedure
with a generator network G and discriminator network D working in opposition. The discriminator network was trained
to differentiate between real high resolution Hi-C samples and outputs produced by the generator network. In turn, the
generator network attempted to produce enhanced Hi-C data which fooled the discriminator network into accepting its
predictions as true high resolution data. We used the standard generator loss over all training samples:

N
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A DAE was then trained with symmetric skip connections using a fully convolutional image restoration architecture
[19] which learned to reconstruct a clean sample from a noise corrupted high resolution input. High resolution Hi-C
inputs 17 were corrupted with Gaussian noise: THR — [HR | nZ where Z ~ N(0, 1) and 7 is a noise corruption
factor. The DAE was trained to reconstruct the noise free input by minimizing MSE between the original matrix and the
DAE’s output.

Following previous work outlining the use of loss networks [8]20], we used the encoder of the DAE as a loss network
¢ in place of a pixel-wise loss, such as MSE. We computed a feature reconstruction loss l?eat which measured the
similarity between feature maps of shape C; x W; x H; for each of the j = 1,..., N encoder layers between two
separate DAE inputs. Specifically, the feature reconstruction loss was computed as the sum of the squared normalized
Euclidean distances between the pre-activation feature representations of the high resolution matrix /7%, and enhanced
matrix G(IL1) across all layers of the encoder network:
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The total objective function of the generator to be minimized was then given by l;tq; = Aaladgo + A fl?eat’ where A\,
and A are scaling constants. Each aspect of the loss function focuses on a specific and desirable aspect of enhancement.
The feature reconstruction loss ensures that HICSR enhanced Hi-C data shares accurate feature representations with
true high resolution Hi-C data. The adversarial loss ensures that the generator favours outputs which lie on the true high
resolution Hi-C data manifold, encouraging visually convincing solutions. The minimization of the combined losses
ensures that HICSR generates enhanced Hi-C data that is both accurate and visually convincing.



3 Experiments

The performance of HICSR was evaluated on the GM 12878 cell line using paired-end Hi-C reads downloaded from the
Gene Expression Omnibus (GEO) database (accession GSE63525) [3]]. The reads were processed into low and high
resolution contact maps using the Hi-C processing pipeline, HiC-Pro with default settings. The high resolution
matrix was generated with all available paired end reads, and the low resolution matrix using 1/16" the original paired
end reads. The contact matrices were then cropped as described in Section [2]to create a dataset of low resolution
sub-matrices and their corresponding high resolution counterparts for each chromosome. The dataset was then split
such that chromosomes 1-16 were used for training, 17, 18 for validation, and 19-22 for testing.

For all comparisons, pretrained models for both DeepHiC  Table 1: Performance on test chromosomes for different
and hicGAN provided by the authors were used. As HiC- loss functions and state-of-the-art MSE and adversarial
Plus and HiCNN prescribe no normalization and were sensi- based enhancement methods compared to HICSR

tive to sequence depth, they were retrained according to the

training methods described in their respective publications. LR HiCNN hicGAN HiCSR HR
Both the generator/discriminator pair, as well as the DAE MAE 2323 0433 0554 0389 0
network, were trained on 70484 sub-matrices of size 40 x MSE 7484 0321 0567 0352 0

40. The DAE was trained over 600 epochs using the Adam PSNR (dB) 12.96 26.64 2420 2624 oo
optimizer [23] with a batch size of 256, a learning rate of
5 x 1073, and a noise corruption factor of = 0.1. After training the autoencoder, the generator and discriminator
training was done in an alternating fashion over 500 epochs using the Adam optimizer with a batch size of 64, and a
learning rate of 10~°. The LeakyReLU activation used in the discriminator was implemented with o = 0.2. Scaling
factors A, and Ay were chosen through cross-validation as 0.1 and 1 respectively. Once trained, Hi-C super-resolution
predictions were made with the generator alone, and the discriminator and DAE were discarded.

On the test chromosomes, we compared HiCSR’s predictions to the low resolution Hi-C contact map (LR), and
the state-of-the-art MSE and adversarial based enhancement methods. Metrics used for the comparison were Mean
Absolute Error (MAE), MSE, and Peak Signal to Noise Ratio (PSNR) and results are summarized in Tablem We found
that HiCSR outperformed all models in MAE, and adversarial methods in MSE and PSNR. Despite a worse MSE
performance compared to HICNN, HiCSR produces a highly realistic enhanced contact map capable of reproducing high
frequency content found in true high resolution Hi-C data. Visual examples comparing a suite of Hi-C enhancements
are included in Figure[2] along with Insulation Scores [24]] and called TAD boundary annotations. The aforementioned
image artifacts produced by the DeepHiC method can be seen in the comparison. We found that all enhancement
methods were highly successful at recovering true TAD boundaries, and that there was a high correlation (r > 0.90)
between true high resolution Hi-C data and enhanced predictions from all models.

We then examined the performance of HiCSR as a function of genomic distance (Figure 3] A,B). Specifically, we
computed the MSE and Person Correlation Coefficient (PCC) as a function of genomic distance on the test chromosomes
and found that HiCSR showed a clear advantage over the previous state-of-the-art adversarial based model on all
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Figure 2: Log scaled super-resolution comparisons of chr21:33 - 35.25 Mb at 10 Kb resolution with Insulation Score
and TAD annotations computed and plotted with HiCPlotter [22]. From left to right: original high resolution, 16x
down-sampled, HiICSR, HiCPlus, HICNN, hicGAN, and DeepHiC.
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Figure 3: Model comparisons, HICSR in blue. (A) MSE evaluated at a range of genomic distances. (B) PCC across
genomic distance between real high resolution Hi-C data and enhanced matrices. (C) ROC curve for identifying
statistically significant contacts found in high resolution Hi-C data averaged over ten classification runs.

metrics. Additionally, at low genomic distances HiCSR outperformed all previously proposed models on all measured
metrics. This is a particularly useful property as the majority of low noise, and significant interactions occur at low
genomic distances. We excluded DeepHiC from metric based comparisons, as its error at low genomic distances is
magnitudes larger than other models.

We also compared each model’s ability to recover statistically significant chromosomal interactions found in the high
resolution contact matrices using Fit-Hi-C [25]]. A binary classification problem was formulated by calling significant
interactions with a cutoff of ¢ < 0.05 within a genomic distance of 2 Mb. As there are few statistically significant
contacts relative to the total size of the matrix, we randomly sub-sampled insignificant contacts to match the number of
statistically significant contacts to make a balanced dataset. The Receiver Operator Characteristic (ROC) curve was
plotted and the Area Under the Curve (AUC) was computed as shown in Figure |§| (C). We found that HICSR achieved
an AUC score of 0.797, outperforming the current best adversarial based model hicGAN, which achieved a score of
0.767.

4 Discussions and future work

Our findings show that the HiCSR framework is capable of producing accurate and visually convincing high resolution
Hi-C contact maps from low resolution data using 16 times fewer sequencing reads. Our method leveraged the strengths
of all previous deep leaning methods and improved them by introducing a feature reconstruction loss developed
specifically for the super-resolution of Hi-C data. In this way, HiCSR outperforms all previous models for low genomic
distances, and adversarial based methods at all genomic distances through increased accuracy and a reduction in
optimization artifacts caused by a perceptual loss from natural images.

Through this work we demonstrated the efficacy of domain specific loss networks for biological problems that are
formulated as non-natural images. We showed that network losses trained on natural images do not always transfer to
problems outside their intended domain. This was observed in DeepHiC’s method where a loss network from a VGG-16
image classifier introduced undesirable image artifacts, and produced patterns not found in the true data generating
distribution. We showed that the use of a pretrained, domain specific DAE as a loss network is a viable substitute to
standard perceptual loss functions for problems outside the natural image domain.

There are many ways in which this work can be further explored and improved. An investigation into additional domain
specific loss terms, such as arrowhead matrix [3]] reconstruction, could improve model performance and ensure that the
enhanced matrices share important problem specific properties with true high resolution Hi-C data. Additionally, further
exploration aims to evaluate the effect of larger down-sample ratios on Hi-C enhancement, as well as the ability for
HiCSR to perform super-resolution on cell lines previously unseen in the training data. Finally, we plan to improve upon
this work by expanding the suite of similarity metrics used to compare performance to include Hi-C reproducibility
methods such as HiCRep [26] and HiC-Spector [27] to gain further insight into both the strengths and weaknesses of
the HICSR framework.



References

[1] E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, T. Ragoczy, A. Telling, I. Amit, B. R.
Lajoie, P. J. Sabo, M. O. Dorschner, R. Sandstrom, B. Bernstein, M. A. Bender, M. Groudine, A. Gnirke,
J. Stamatoyannopoulos, L. A. Mirny, E. S. Lander, and J. Dekker, “Comprehensive mapping of long-range
interactions reveals folding principles of the human genome,” Science, vol. 326, no. 5950, pp. 289-293, 2009.

[2] J. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li, Y. Shen, M. Hu, J. Liu, and B. Ren, “Topological domains in
mammalian genomes identified by analysis of chromatin interactions,” Nature, vol. 485, pp. 376-80, 2012.

[3] S. Rao, M. H Huntley, N. Durand, E. K Stamenova, I. Bochkov, J. Robinson, A. L Sanborn, I. Machol, A. Omer,
E. S Lander, and E. Lieberman Aiden, “A 3d map of the human genome at kilobase resolution reveals principles
of chromatin looping,” Cell, vol. 159, 2014.

[4] M. Franke, D. Ibrahim, G. Andrey, W. Schwarzer, V. Heinrich, R. Schopflin, K. Kraft, R. Kempfer, I. Jerkovi¢,
W.-L. Chan, M. Spielmann, B. Timmermann, L. Wittler, I. Kurth, P. Cambiaso, O. Zuffardi, G. Houge, L. Lambie,
F. Brancati, and S. Mundlos, ‘“Formation of new chromatin domains determines pathogenicity of genomic
duplications,” Nature, vol. 538, pp. 265-269, 2016.

[5] D. Lupiaiiez, K. Kraft, V. Heinrich, P. Krawitz, F. Brancati, E. Klopocki, D. Horn, H. Kayserili, J. Opitz, R. Laxova,
F. Santos-Simarro, B. Gilbert-Dussardier, L. Wittler, M. Borschiwer, S. A Haas, M. Osterwalder, M. Franke,
B. Timmermann, J. Hecht, and S. Mundlos, “Disruptions of topological chromatin domains cause pathogenic
rewiring of gene-enhancer interactions,” Cell, vol. 161, 2015.

[6] A. Schmitt, M. Hu, and B. Ren, “Genome-wide mapping and analysis of chromosome architecture,” Nature
Reviews Molecular Cell Biology, vol. 17, 2016.

[7] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. P. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic
single image super-resolution using a generative adversarial network,” CoRR, vol. abs/1609.04802, 2016.

[8] J. Johnson, A. Alahi, and F. F. Li, “Perceptual losses for real-time style transfer and super-resolution,” 2016.

[9] Y. Zhang, L. An, J. Xu, B. Zhang, W. J. Zheng, M. Hu, J. Tang, and F. Yue, “Enhancing hi-c data resolution with
deep convolutional neural network hicplus,” Nature Communications, vol. 9, no. 1, p. 750, 2018.

[10] T.Liu and Z. Wang, “HiCNN: a very deep convolutional neural network to better enhance the resolution of Hi-C
data,” Bioinformatics, 2019.

[11] M. Mathieu, C. Couprie, and Y. Lecun, “Deep multi-scale video prediction beyond mean square error,” 2015.

[12] J. Johnson, A. Alahi, and F. Li, “Perceptual losses for real-time style transfer and super-resolution,” CoRR, vol.
abs/1603.08155, 2016.

[13] Q. Liu, H. Lv, and R. Jiang, “hicGAN infers super resolution Hi-C data with generative adversarial networks,”
Bioinformatics, vol. 35, no. 14, pp. 99-107, 2019.

[14] H. Hong, S. Jiang, H. Li, C. Quan, C. Zhao, R. Li, W. Li, G. Du, X. Yin, Y. Huang, C. Li, H. Chen, and X. Bo,
“Deephic: A generative adversarial network for enhancing hi-c data resolution,” bioRxiv, 2019.

[15] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” CoRR, vol.
abs/1409.1556, 2014.

[16] O.Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein,
A. C. Berg, and F. Li, “Imagenet large scale visual recognition challenge,” CoRR, vol. abs/1409.0575, 2014.

[17] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing robust features with
denoising autoencoders,” pp. 1096-1103, 2008.

[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial nets,” pp. 2672-2680, 2014.

[19] X. Mao, C. Shen, and Y. Yang, “Image restoration using convolutional auto-encoders with symmetric skip
connections,” CoRR, vol. abs/1606.08921, 2016.

[20] Mao, “Single image super-resolution via perceptual loss guided by denoising auto-encoder,” SpringerLink, 2018.



[21] N. Servant, N. Varoquaux, B. R. Lajoie, E. Viara, C.-J. Chen, J.-P. Vert, E. Heard, J. Dekker, and E. Barillot,
“Hic-pro: an optimized and flexible pipeline for hi-c data processing,” Genome Biology, vol. 16, no. 1, p. 259,
2015.

[22] K. C. Akdemir and L. Chin, “Hicplotter integrates genomic data with interaction matrices,” Genome Biology,
vol. 16, no. 1, p. 198, 2015.

[23] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” International Conference on Learning
Representations, 2014.

[24] E. Crane, Q. Bian, R. P. McCord, B. R. Lajoie, B. S. Wheeler, E. J. Ralston, S. Uzawa, J. Dekker, and B. J. Meyer,
“Condensin-driven remodelling of x chromosome topology during dosage compensation,” Nature, 2015.

[25] F. Ay, T. Bailey, and W. Stafford Noble, “Statistical confidence estimation for hi-c data reveals regulatory chromatin
contacts,” Genome research, vol. 24, 2014.

[26] T. Yang, F. Zhang, G. Yardimci, F. Song, R. Hardison, W. Noble, F. Yue, and Q. Li, “Hicrep: assessing the
reproducibility of hi-c data using a stratum- adjusted correlation coefficient,” Genome Research, vol. 27, p.
2r.220640.117, 2017.

[27] K.-K. Yan, G. G. Yardimci, C. Yan, W. S. Noble, and M. Gerstein, “HiC-spector: a matrix library for spectral and
reproducibility analysis of Hi-C contact maps,” Bioinformatics, vol. 33, no. 14, pp. 2199-2201, 2017.



	Introduction
	Methodology
	Experiments
	Discussions and future work

