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Abstract

We present cDeepbind, a novel approach to model sequence and structure-specific binding of RNA
binding proteins (RBPs). Recent deep learning approaches modelling RBP binding have used
aggregate structural context vectors to represent RNA structure. Here we present an approach that
generates a high-dimensional embedding of the base-pairing matrix and incorporates it into a deep
neural network that predicts binding intensities for all 244 probes in RNAcompete simultaneously
in a multi-task prediction setup. We observe an improvement in in-vitro prediction performance for
our model compared to previous approaches and validate its ability to identify the effects of splicing
mutations in real genomic contexts.

1 Introduction

RNA binding proteins (RBPs) are crucial bio-molecules that play a key role in regulating gene expression by regulating
various steps of pre-mRNAs processing, including splicing, editing and polyadenylation. They allow for the generation
of a large diversity of processed RNAs from the genome by regulating their maturation, stability, transport and
degradation.

Many RBPs are known to have a preference for both a specific sequence and secondary structure of the target RNA
[11]. The structure of RNA can affect accessibility to target sites, influencing the binding of RBPs ([7]). Several
computational methods predict the secondary structure of an RNA sequence from the order of its bases based on
thermodynamic stability constraints [24, 18]. It has been shown that local secondary structure restricts access to a large
subset of sequence motifs that would otherwise be bound by RBPs [25].
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Figure 1: Model architecture for cDeepBind. Here L represents the length of the sequence, Dseq and Dstruct represent
the dimensions of the sequence and structure encodings, and B represents the batch-size of inputs fed to the model.

Several methods have been developed to model RBP binding preferences including methods that model both sequence
and secondary structure specificity. The RNAcompete assay provided a comprehensive analysis of binding preferences
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of RBPs covering 205 genes in 24 different eukaryotes [23] and has been used as a standard benchmark for comparing
in-vitro binding predictors. Deepbind [2] was the first approach to use deep convolutional neural networks(CNNs) to
model RBP binding directly from sequences. However, Deepbind did not incorporate RNA secondary structure as
an input feature and thus did not model secondary structure explicitly. Other methods RNAcontext [15], RCK [21]
and GraphProt [19] incorporated RNA secondary structure but did not have the same expressive power as deep neural
networks. DLPRB [3] improved upon RCK by using deep neural networks that use concatenated sequence and structure
vectors as their input and outperformed all previous approaches on RNAcompete. The DeepRiPe model [9] jointly
models RBP binding across multiple RBPs from CLIP-Seq but does not model secondary structure explicitly.

2 Methods

Inspired by previous approaches to this problem, we propose an architecture that aims to achieve the following objectives
and adress shortcomings of prior work:

• Given a sequence, jointly predict binding intensities for all RBPs in RNAcompete. Multitask learning
encourages the model to learn useful shared representations and should improve generalization [4]

• Generate a high-dimensional trainable representation of the RNA base-pairing matrix instead of average
structure vectors.

• Use advances in neural network architecture design to explore a larger space of models that are significantly
faster than Recurrent Neural Networks (RNNs) while having the same expressive power.

Figure 2: (A)Folding structure for a sequence from the RNAcompete dataset (B) Pairing matrix representing the folding
structure (C) Transformed positional encoding obtained by multiplying the matrix in (B) with the raw position encodings
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Figure 3: Evaluating cDeepbind predictions on held-out probes in RNAcompete

2.1 Architecture

The cDeepBind model employs a stack of gated convolutions with residual and skip connections. Gated convolutions
have been proposed as an alternative to RNNs, that compute the gating signal in parallel for the entire input, as opposed
to an RNN that process the input sequentially. Gated convolutions have outperformed RNNs on tasks such as language
modelling [5] and phoneme recognition [20], and are much faster for training and inference. The encoded input is fed
into a stack of 6-18 residual dilated convolution blocks [12]. We add skip connections after every 3 residual blocks. The
residual blocks include a Squeeze-Excitation(SE) operation [13] that explicitly models the interdependence between
the input channels. Intuitively we expect the SE operator to encourage the model to learn the dependence between the
multiple output heads corresponding to each prediction target.

To allow the model to have access to the relative ordering of bases within the sequence, we use sinusoidal positional
embeddings [27, 8]. This approach allows the model to generalize to sequence lengths not seen during training.

2.2 Input and Preprocessing

To encode the structural context we sample an ensemble of 10 structure graphs using Boltzman sampling [6], using
the Forgi package [26].We encode the graph into a pairing matrix by first setting all diagonal values to 1. Then for
paired bases, we set the value of the nucleotide they are paired with to 1, and normalize the row. Finally, we average the
pairing matrices obtained for each graph. An example is shown in Figure 2.

We then multiply the pairing matrix with the sinusoidal positional encoding matrix to obtain the final structure
representation.

We encode the RNA sequence as a one-hot-encoded vector and concatenate it with the transformed graph embedding
representing the structure. The target RNAcompete probe intensities are clamped at the 99.95th percentile and
normalized to zero mean and unit variance, as done by other benchmarks on this dataset.

2.3 Training

We used random sampling to generate hyperparameters defining our model. We set the number of residual convolution
layers between 6 to 18, the number of channels between 32 to 128, and the filter size between 16 and 32. For each
residual block, the dilation rate is chosen randomly between 1, 2 and 4. We randomly choose between using a gated
tanh [5] or ReLU activations in our residual blocks and then use the same activation for each block within the model.
We use a reduction factor of 16 in the SE unit and batch-normalization [14] before the activation. To make our training
robust to outliers, we used the Huber loss function, which we confirmed empirically to work better than mean squared
error. We use the mean loss across probes for each input while masking the contribution that would arise from targets
with missing values. We use 5-fold cross-validation to identify the hyperparameters for our model. The final model
is an ensemble of the 5 best performing models from the hyperparameter search. For each probe, we use the mean
prediction from each model in the ensemble as the final predicted value. We used the Adam [16] optimizer with a batch
size of 128 and a learning rate of 0.001 for 50 epochs with early stopping.
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2.4 Computational resource requirements

We implemented our model in Tensorflow [1] and ran our experiments on a single machine with 2 NVIDIA TITAN
V GPUs and a 12 core Intel(R) Core(TM) i7-5930K CPU. The total training time for a single multi-task model for
all experiments in RNAcompete is about 20 minutes. For generating all predictions using a pre-trained model, we
can encode the sequence and structure at 50 sequences/second and then generate predictions from our neural network
ensemble at 1500 sequences/second.

3 Results

3.1 In-vitro evaluation

cDeepbind predictions have a higher correlation on held out probes in RNAcompete compared to other approaches. As
done by other methods on this dataset we use Set A for training and hyperparameter search and report performance on
probes in Set B. As shown in Figure 3 cDeepbind has an average Pearson correlation of 0.663, which is higher than
state-of-the-art DLPRB-RNN that achieves 0.628 (p-value=2.5× 10−27, Wilcoxon signed rank test).

3.2 Predicting the effect of splicing mutations

Figure 4: Evaluating RBP models for SRSF1

To evaluate our model’s ability to generalize to tasks out-
side of the in-vitro RNAcompete assay we use a set of 82
SNVs reported in [22] and recently used as an evaluation
set by DeepClip [10], a deep neural network model that
predicts RBP binding profiles trained on CLIP datasets.
We use the binding score predicted for SRSF1 a which
is known as a positive regulator of exon inclusion. We
look at the difference in SRSF1 binding scores for the
Wild Type and Mutant 15-mer sequences overlapping
the variants and illustrate the difference in scores for the
variants reported to cause skipping versus those reported
to cause no exon skipping in Figure 4. For Deepbind we
take the average score of the 6 RNAcompete models for
SRSF1, the average of the 6 output heads for cDeepBind,
and the scores provided by the authors for DeepClip. We
observe a significant decrease in predicted SRSF1 bind-
ing scores (p-values computed using the Mann–Whitney
U test) for mutations that cause exon-skipping. This sug-
gests that cDeepBind can predict RBP binding in real
genomic contexts as well as models trained directly on
CLIP-seq.

4 Discussion

We have presented a new approach for modelling RBP binding that addresses some of the limitations of prior work
and obtains a higher pearson correlation on the RNAcompete dataset. We do not claim the superiority of our method
based solely on the RNAcompete benchmark since over time it is likely that methods would have overfited to this
metric. We have also evaluated our model on a set of splicing mutations to demonstrate that our model is useful
beyond just in-vitro prediction. Due to the extensible nature of our method, we would like to explore training on
other high-throughput binding datasets such as RNA-bind-n-seq [17] and eCLIP [29]. We are aware of the challenges
associated with modelling in-vivo data but believe that our multi-task framework would be well-suited for modelling the
competitive interactions of multiple RBPs. We would also like to explore integrating deep learning based methods for
secondary structure prediction such as DMfold [28] for learning an end-to-end differentiable model that can incorporate
secondary structure internally.

5 Software Availability

Code and Datasets used are available at https://github.com/PSI-Lab/cDeepbind
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